A Natural and Simple Function Which is Hard for All Evolutionary Algorithms
نویسندگان
چکیده
Evolutionary algorithms are randomized search strategies which have turned out to be efficient for optimization problems of quite different kind. In order to understand the behavior of evolutionary algorithms, one also is interested in examples where evolutionary algorithms need exponential time to find an optimal solution. Until now only artificial examples of this kind were known. Here an example with a clear and simple structure is presented. It can be described by a short formula, it is a polynomial of degree 3, and it is an instance of a well-known problem, namely the theoretically and practically important MAXSAT problem.
منابع مشابه
A Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts
The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...
متن کاملDesigning a Meta-Heuristic Algorithm Based on a Simple Seeking Logic
Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...
متن کاملOPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملA modified elite ACO based avoiding premature convergence for travelling salesmen problem
The Travelling Salesmen Problem (TSP) is one of the most important and famous combinational optimization problems that aim to find the shortest tour. In this problem, the salesman starts to move from an arbitrary place called depot and after visiting all nodes, finally comes back to depot. Solving this problem seems hard because program statement is simple and leads this problem belonging to NP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000